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Abstract

We present a new Vlasov code for collisionless plasmas in the nonrelativistic regime. A Darwin approximation is used
for suppressing electromagnetic vacuum modes. The spatial integration is based on an extension of the flux-conservative
scheme, introduced by Filbet et al. [F. Filbet, E. Sonnendrücker, P. Bertrand, Conservative numerical schemes for the Vla-
sov equation, J. Comput. Phys. 172 (2001) 166]. Performance and accuracy is demonstrated by comparing it to a standard
finite differences scheme for two test cases, including a Harris sheet magnetic reconnection scenario. This comparison
suggests that the presented scheme is a promising alternative to finite difference schemes.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For many interesting problems in plasma physics a deeper understanding can only be gained with the help
of kinetic plasma models. In contrast to macroscopic models where only the streaming velocity, pressure, tem-
perature and other fluid quantities are considered, the kinetic description deals with the particle distribution
function f(x,v). Here x is the position in space and v is the three-dimensional velocity. The equation describing
the evolution of the six-dimensional distribution function in phase space for a collisionless system is the Vlasov
equation. The complexity of kinetic plasma descriptions arises because of the electromagnetic fields appearing
in the Vlasov equation. These depend on the charge density and current density in the plasma which are in
turn given by the moments of the distribution function. Thus, the system presents itself as a strongly coupled
nonlinear system of partial differential equations. Analytical solutions of this system are only possible for a
very restricted number of special problems.

Among the numerous problems, where collisionless kinetic plasma simulations are important, we name only
two topics, which are important in both laboratory- and astrophysical-settings. These are the thin current sheet
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region in collisionless magnetic reconnection processes and the structure of collisionless shocks. The Harris sheet
model [1] gives a kinetic equilibrium of a current sheet separating two regions of different magnetic field. While
this can be formulated analytically, the reconnection process, which is initiated by small perturbations from the
Harris equilibrium, is not yet fully understood. There has been tremendous progress in the last 10 years, both on
the fluid level (see [2–7]) and using kinetic simulations (see [8–17] for Particle in Cell simulations and [18,19] for
Vlasov simulations; for a comparison of fluid and kinetic simulations see [20]). Yet, still many questions remain
to be solved, such as: the spontaneous onset of reconnection, three-dimensional effects, turbulence in the recon-
nection zone, acceleration of particles, and comparison to experiments. It has become clear that, especially for
the acceleration of particles, fully kinetic models and simulations are inevitable. Up to now most kinetic simu-
lations make use of the particle in cell method (PIC), and very few deal with a direct integration of the Vlasov
equation. In order to validate PIC simulations of collisionless magnetic reconnection, it is necessary to simulate
the same problems using different schemes, and Vlasov schemes are an important alternative method.

The second important system currently investigated is the problem of collisionless shocks. In the framework
of MHD-equations these shocks appear as singular points, where the macroscopic quantities show a discon-
tinuity. To understand the inner structure of shocks, kinetic models are necessary since only they can describe
the underlying dissipation processes. For some special geometries together with low Mach numbers there are
time independent analytical solutions to the kinetic equations, corresponding to stable shock conditions. For
higher Mach numbers these solutions break down and a time dependant behaviour appears. This leads to exci-
tation of wave modes with a possibility of particle acceleration. This time dependant behaviour is not acces-
sible with analytical methods and numerical approaches have to be attempted.

As mentioned above, in practise there are two different numerical approaches to solving the Vlasov equa-
tion. In the particle in cell (PIC) approach trajectories of individual representative particles are followed
through the electromagnetic fields. The fields are given on a numerical grid, while the positions and velocities
of the simulation particles can be any value. Due to the finite number of particles, the PIC method suffers from
considerable numerical noise. A related problem is the fact that only those parts of the distribution function
can be calculated with high precision, which contain many particles in a phase space volume. In particular, the
high energy tails of the distribution function cannot be resolved.

The other numerical approach integrates the Vlasov equation directly on a high-dimensional numerical grid
in phase space. These Vlasov schemes do not suffer from any numerical noise. The tails of the distribution
function can be modelled with high accuracy and deviations from a Maxwellian distribution can be pin-
pointed. These advantages are traded against higher computational effort of the Vlasov-codes as compared
to PIC-codes. Additionally, care has to be taken for choosing the integration scheme of Vlasov�s equation,
taking into account the hyperbolic nature and corresponding integral quantities.

The distribution function has to fulfil a number of restrictions which are derived from its physical interpre-
tation as probability density in phase space and from the properties of the Vlasov equation. The probability
density interpretation implies that the distribution function has to remain positive at all times. One property of
Vlasov�s equation is that the values of the distribution function are transported along the characteristics
through phase space without modification. When starting from a positive distribution function this not only
implies that the positivity is preserved but also that both upper and lower bounds of the distribution function
remain unchanged, and that no new maxima or minima are generated. A second property of Vlasov�s equation
is the conservation of phase space density as a consequence of Liouville�s equation.

A numerical scheme cannot satisfy all the above criteria exactly. Therefore, a number of numerical schemes
have been proposed, each of which is a compromise between different requirements. Spectral codes which
solve the Vlasov equation in the Fourier domain suffer only from little numerical diffusion, but they are mostly
limited to periodic boundary conditions, see, e.g. [21]. Another important drawback of these methods is that
they do not preserve positivity, let alone the number of extrema in the distribution function. Eulerian solvers,
on the other hand, allow for nonperiodic boundary conditions and can be made to preserve positivity and the
maximum principle. They are, however, slightly more diffusive than spectral codes. A recent comparison of
Eulerian solvers can be found in [22]. In this work, we will use a flux conservative and positive scheme [23]
which obeys the maximum principle and suffers from relatively little numerical diffusion.

The integration of the Vlasov equation has to be performed simultaneously to the evaluation of the Max-
well equations. The dynamics of the full electrodynamic fields imposes an additional criterion for the time step
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used in the simulation. Since electromagnetic waves can travel through the system, the time step has to be cho-
sen such that the speed of light c is resolved on the numerical grid: Dt < Dx/c, where Dt is the time step and Dx

is the grid resolution. One way to avoid this is to use an electrostatic model. This is, however, only applicable
in special situations where the self generated magnetic field can be neglected. Here we will use the Darwin
approximation of Maxwell�s equations, which follows from a rigorous expansion of the full Maxwell equa-
tions in orders of v2/c2, where v is a characteristic velocity of the system. In the framework of the Darwin
approximation, the purely electromagnetic modes are neglected but electrostatic, magnetostatic, and inductive
fields are still considered. Darwin�s approximation has been widely used with particle in cell simulations
[24,27], however, it has not found its way into Vlasov simulations yet. An alternative method is the use of
an implicit time stepping as it has been implemented by Ricci et al. [14] in the Celested3D code.

The following section will present the basic equations together with their normalisation. In Section 3, we
will introduce the Darwin approximation of the Maxwell equations. Section 4 will give an overview of the
one-dimensional flux conservative scheme used for integrating Vlasov�s equation, while Section 5 will describe
the time splitting schemes that provides the generalisation to the five-dimensional phase space. In Section 6
results are presented and Section 7 contains some concluding remarks.
2. Basic equations

In this and the following section we want to present the basic equations and approximations of our model.
The aim is to simulate Vlasov�s equation
ofk

ot
þ v � rfk þ

qk

mk
ðEþ v� BÞ � rvfk ¼ 0.
Here fk(x,v,t) is the distribution function of species k. In this work, only singly charged ions and electrons
k = i, e are considered, although the code allows arbitrary species. The quantities qk and mk are the charge
and the mass of the particles of species k. The Lorentz force depends on the electric and magnetic fields. These
are in general given by Maxwell�s equations:
r� E ¼ � oB

ot
; ð1Þ

1

l0

r� B ¼ e0

oE

ot
þ j; ð2Þ

r � E ¼ 1

e0

q; ð3Þ

r � B ¼ 0; ð4Þ
where B is the magnetic and E the electric field. In Section 3 we will present the Darwin approximation of
Maxwell�s equations, which is used to solve the electromagnetic fields in our simulation code. The charge den-
sity q and the current density j are given by the moments of the distribution function:
q ¼
X

k

qk

Z
fkðx; vÞd3v; ð5Þ

j ¼
X

k

qk

Z
vfkðx; vÞd3v. ð6Þ
2.1. Normalisation

Here we want to present the normalisation of the Vlasov–Maxwell system equations. For this we introduce
normalising parameters A0, where A stands for any of the physical quantities. The normalised quantities Â are
then given by Â ¼ A=A0.

The un-normalised characteristics of Vlasov�s equation for species k are given by:
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dx

dt
¼ v; ð7Þ

dv

dt
¼ qk

mk
ðEþ v� BÞ. ð8Þ
Here we have used the symbols x and v to denote the characteristics x = x(t,x0,v0) and v = v(t,x0,v0). These
have to be distinguished from the independent variables x and v in Vlasov�s equation. In the following the
appropriate meaning should be clear from the context. The form of the above equations is not modified by
the normalisation:
dx̂

d̂t
¼ v̂; ð9Þ

dv̂

d̂t
¼ q̂k

m̂k
ðÊþ v̂� B̂Þ. ð10Þ
Only the individual charge to mass ratios q̂k=m̂k are relevant parameters of the system. On the other hand,
Maxwell�s equations simplify to:
r� Ê ¼ � oB̂

ôt
; ð11Þ

r � B̂ ¼ a2 oÊ

ôt
þ ĵ

 !
; ð12Þ

r � Ê ¼ q̂; ð13Þ
r � B̂ ¼ 0. ð14Þ
Here a = v0/c is the ratio of the normalisation velocity over the speed of light.
We choose m0 = mi and q0 = e, where mi is the ion mass and e is the unit electron charge. B0 and n0 remain

free to choose. Then x0 = ki is the ion inertial length, t0 = 1/Xi is the inverse ion gyro-frequency (Xi = eB/mi),
and v0 ¼ vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0min0
p

is the Alfvén velocity.
We still have the freedom of choosing the magnetic field B0. If we choose B0 to be a characteristic magnetic

field magnitude in the system, then a gives the ratio of Alfvén velocity to the speed of light in the system. On
the other hand we can choose B0 such that a = 1. Then the local magnetic field magnitude in the system deter-
mines vA/c. In this work we will choose the first, so that the field magnitude in the system remains around
unity and the free parameter a can be used to set the magnetic field strength. In the following we will drop
the hat-notation (�) for the normalised quantities.

3. Darwin approximation

The flux conservative integration scheme of the Vlasov equation, which will be presented in Section 4, is not
restricted by a CFL condition on the time step. However, when combined with the Maxwell equations for the
electromagnetic fields a CFL condition is introduced by the time integration of the fields on the numerical
grid. This implies that the fastest electromagnetic wave mode, i.e., the vacuum mode, has to be resolved on
the grid,
Dt <
Dx
c
; ð15Þ
where c is the speed of light. This condition imposes severe restrictions on the time step. In many applications
the electromagnetic vacuum modes are not important. The standard solution to this problem is the electro-
static approximation. In this approximation only Poisson�s equation needs to be solved for the electric field.
A magnetic vacuum field can also be superimposed. The influence of the plasma on the magnetic field is, how-
ever, completely neglected. To account for this influence, and thus the possibility of magnetosonic wave
modes, the Darwin approximation is commonly used in particle simulations. This approximation can be de-
rived from the Maxwell equations in an expansion in orders of v2/c2, where v is some characteristic velocity.
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Assuming v2� c2 this leads to a set of equations where the vacuum modes are eliminated but all other wave
modes are retained. Darwin�s approximation can be used when the velocities are small compared to the speed
of light and there is no energy transported by the electromagnetic radiation. Some applications are the study
of magnetic reconnection, e.g. in the earths magnetotail [25], or the investigation of high intensity charged par-
ticle beams [26]. Naturally, it is not capable of describing phenomena where the electromagnetic vacuum
modes play a major role, e.g. in laser–plasma interaction.

Darwin�s approximation starts from a separation of the electric field into a longitudinal and a transverse
part [27]
E ¼ EL þ ET ð16Þ

with
r� EL ¼ 0 and r � ET ¼ 0. ð17Þ

The normalised Maxwell�s equations are then approximated by:
r � EL ¼ q; ð18Þ
r � B ¼ 0; ð19Þ
r � ET ¼ �otB; ð20Þ
r � B ¼ a2ðotEL þ jÞ. ð21Þ
The approximation only appears in Eq. (21), where only the longitudinal part of the displacement current is
taken. All other equations remain unchanged. In vacuum, Eqs. (20) and (21) are now decoupled and no purely
electromagnetic modes can appear.

An advantage of using Darwin�s approximation instead of the full Maxwell equations is the fact, that the
equations can be solved without performing a time integration step. All the electromagnetic fields can be
calculated from the moments of the distribution at a given time together with the boundary conditions for
the fields. This will be presented in the following.

Poisson�s equation for the electrostatic potential
DU ¼ �q with EL ¼ �rU
immediately gives the longitudinal electric field. Taking the curl of (21), together with (17) and (19), results in
DB ¼ �a2r� j;
giving three Poisson equations for the components of the magnetic field. To calculate ET the curl of Eq. (20) is
taken and Eqs. (21) and (17) substituted, giving:
DET ¼ otr� B; ð22Þ
¼ a2otj�rða2ott/Þ. ð23Þ
To eliminate the time derivative of the current density, j is expressed as moment of the distribution function,
otj ¼
X

k

qk

Z
votfk d3v.
Here the index k sums over all particle species. Now, Vlasov�s equations for the different species are
substituted,
otj ¼ �
X

k

rqkhvvik þ
X

k

qkqk

mk
Eþ

X
k

qkqk

mk
hvik � B.
Here the pointed brackets ÆÆæk denote averaging with the distribution function fk. The electric field appearing
on the right hand side is, of course, comprised of the longitudinal and the transverse part. While the longitu-
dinal component is already known from the charge density, it is the transverse component that is being
calculated here. Inserting otj into Eq. (23) and introducing the local plasma frequency



H. Schmitz, R. Grauer / Journal of Computational Physics 214 (2006) 738–756 743
x2 ¼
X

k

qkqk

mk
; ð24Þ
this leads to
DET � a2x2ET ¼ �
X

k

rqkhvvik þ
X

k

qkqk

mk
EL þ

X
k

qkqk

mk
hvik � B�rða2ott/Þ. ð25Þ
This equation is a Helmholtz-equation for each component of ET. The last term on the right hand side can be
deduced from the condition $ Æ ET = 0, since it only adds a curl free component to ET. It can thus be omitted
to calculate ~ET, with
D~ET � a2x2 ~ET ¼ �
X

k

rqkhvvik þ
X

k

qkqk

mk
EL þ

X
k

qkqk

mk
hvik � B.
~ET is then projected onto its divergence free part by calculating H with DH ¼ r � ~ET to give ET ¼ ~ET �rH.
Altogether this sums up to 8 elliptic equations. However, the time spent in solving these equations, com-

pared to the integration of the five or six-dimensional problem, is negligible. This situation is different in
PIC simulations. One has to compare about 30 particles per cell used in standard PIC simulations to 103–
303 mesh points for the resolution of the velocity space used in Vlasov codes. For this reason, the computa-
tional effort of solving the above elliptic equations has an effect on the total computational time in standard
PIC simulations, but not in Vlasov simulations.

4. Flux conservative scheme

In this section, we briefly present the numerical scheme used for integrating the Vlasov equation. This
scheme has originally been presented in Filbet et al. [23]. The scheme uses a flux conservative formulation
and is based on a third order reconstruction of the primitive of the distribution function using a fixed stencil.

To formulate the scheme we start from the observation that in Hamiltonian systems the values of the dis-
tribution function are transported along the characteristics
f ðn; tÞ ¼ f ðX ðs; t; nÞ; sÞ. ð26Þ

Here X(s,t,n) denotes the characteristic with parameter s that satisfies X(t,t,n) = n, where in general n = (x,v).
For the rest of this section, we restrict the calculations to one dimension. The generalisation to the higher
dimensional system will be given later. We thus assume n 2 R. Then we can integrate (26) and obtain a prop-
agator from time tn to time tn + 1
Z xiþ1=2

xi�1=2

f ðx; tnþ1Þdx ¼
Z X ðtn;tnþ1;xiþ1=2Þ

X ðtn;tnþ1;xi�1=2Þ
f ðx; tnÞdx. ð27Þ
Here xi� 1/2 and xi + 1/2 are the boundaries of the numerical grid cell i. The discretisation of the distribution
function is now suggested by the above equation. The values f n

i on the numerical grid represent the cell
integrals
f n
i ¼

1

Dx

Z xiþ1=2

xi�1=2

f ðx; tnÞdx.
We also define the flux through a cell boundary at xi + 1/2 during the time interval [tn;tn + 1]
Un
iþ1=2 ¼

Z xiþ1=2

X ðtn;tnþ1;xiþ1=2Þ
f ðx; tnÞdx.
Then Eq. (27) can be expressed in the following form:
f nþ1
i ¼ Un

i�1=2 þ f n
i � Un

iþ1=2. ð28Þ
This equation still follows exactly from Vlasov�s equation. However, the flux U has to be calculated and this
requires an approximation of the distribution function.
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In the framework of the third order positive and flux conservative scheme, as presented by [23], the prim-
itive of the distribution function is approximated using a four point stencil. Let
F ðx; tnÞ ¼
Z x

x0

f ðx0; tnÞdx0; ð29Þ
then it follows exactly that
F ðxiþ1=2; tnÞ ¼ Dx
Xi

k¼0

f n
k � F n

i . ð30Þ
The primitive is given exactly on the cell boundaries. To approximate F(x,tn) in the cell interval [xi� 1/2;xi + 1/2],
the four points {xi� 3/2,xi� 1/2,x i + 1/2,xi + 3/2} are used. Taking the derivative of the primitive, we recover the
approximation of the distribution function
f�ðxÞ ¼ fi þ
�þi

6Dx2
½2ðx� xiÞðx� xi�3=2Þ þ ðx� xi�1=2Þðx� xiþ1=2Þ�ðfiþ1 � fiÞ

� ��i
6Dx2

½2ðx� xiÞðx� xiþ3=2Þ þ ðx� xi�1=2Þðx� xiþ1=2Þ�ðfi � fi�1Þ. ð31Þ
Here limiters �	i are introduced. The limiters are chosen in such a way as to limit the values of the distribution
function to a fixed interval 0 6 f�(x) 6 f1, where f1 is the maximum of all fi. The �	i can be written as:
�þi ¼
minð1; 2f i=ðfiþ1 � fiÞÞ if f iþ1 � fi > 0;

minð1; 2ðf1 � fiÞ=ðfi � fiþ1ÞÞ if f iþ1 � fi < 0;

�
ð32Þ

��i ¼
minð1; 2ðf1 � fiÞ=ðfi � fi�1ÞÞ if f i � fi�1 > 0;

minð1; 2f i=ðfi�1 � fiÞÞ if f i � fi�1 < 0.

�
ð33Þ
If we determine j such that xj� 1/2 6 X(tn,tn + 1, xi + 1/2) < xj+1/2, we get
Uiþ1=2 ¼ ð1� dÞ½fj þ ð1=6Þdðdþ 1Þ�þðfjþ1 � fjÞ � ð1=6Þdðd� 2Þ��ðfj � fj�1Þ� þ Dx
Xmaxði;jÞ�1

k¼minði;jÞþ1

fk; ð34Þ
where d = X(tn,tn + 1,xi + 1/2) � xj� 1/2.

5. Time splitting and integration of characteristics

The above scheme was presented in one dimension. To perform two-dimensional Vlasov-simulations
including magnetic fields, the scheme has to be generalised to a total of five dimensions. Califano et al. [28]
proposed a scheme in which the individual steps for the different dimension are carried out using a second
order time splitting scheme. The scheme is an extension of the time splitting scheme presented by Cheng
and Knorr [29]. For the two spatial directions x and y, the projection of the characteristics onto the axes is
simply evaluated from by the corresponding velocity components vx and vy. In this way, the two space dimen-
sions are independent of each other and can be performed sequentially,
T x ¼ T xT y ; ð35Þ

where Tk denotes a time-integration step in one dimension with the direction k. In contrast to this, the velocity
components are not independent of each other due to the magnetic field. To create a second order scheme
Califano et al. [28] formulated a straightforward second order time splitting scheme,
T vðDtÞ ¼ T vx
Dt
4

� �
T vy

Dt
2

� �
T vx

Dt
4

� �
T vzðDtÞT vx

Dt
4

� �
T vy

Dt
2

� �
T vx

Dt
4

� �
. ð36Þ
This propagator in the velocity directions was then combined with the propagator in the space directions to
create the full scheme,
T fullðDtÞ ¼ T xðDt=2ÞT vðDtÞT xðDt=2Þ. ð37Þ
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In the following we will refer to this method as the time splitting method.
We implemented and tested this scheme, but found it to suffer from substantial inaccuracies, as shown in

Section 6.1. Therefore, a new scheme for the integration is proposed in this work which we call the back-
substitution method. Here, the integration of Vlasov�s equation in the three velocity dimensions is still split
into three separate steps, one for each direction. The difference to the above scheme is the way the integration
of the characteristics is separated out into the three substeps. This implies that the concrete implementation of
the scheme proposed here depends on the method of integration of the characteristics. We will therefore
quickly present Boris� scheme for integration of characteristics in a magnetic field [27,30,31]. Boris� scheme
is widely used in Particle codes and has the advantage that it is a second order integration scheme in which
the magnetic field does not cause a change in the kinetic energy. The integration step is formulated as an impli-
cit finite difference scheme
vnþ1 � vn

Dt
¼ q

m
Eþ vnþ1 þ vn

2
� B

� �
. ð38Þ
The electric and magnetic forces are separated,
v� ¼vn þ Dt
2

q
m

E; ð39Þ

vþ ¼vnþ1 � Dt
2

q
m

E; ð40Þ
leading to
vþ � v�

Dt
¼ q

2m
ðvþ þ v�Þ � B. ð41Þ
The transformation from v� to v+ is a pure rotation with an angle h, where
tan
h
2

����
���� ¼ Dt

2

qB
m

. ð42Þ
To implement this rotation the vectors t and s are defined
t ¼ Dt
2

qB

m
; s ¼ 2t

1þ t2
. ð43Þ
Then the rotation is performed in two steps:
v0 ¼ v� þ v� � t; ð44Þ
vþ ¼ v� þ v0 � s. ð45Þ
This scheme supplies vnþ1 ¼ ðvnþ1
x ; vnþ1

y ; vnþ1
z Þ in terms of vn ¼ ðvn

x ; v
n
y ; v

n
z Þ.

For the integration of Vlasov�s equation in three-dimensional velocity space the three individual integration
steps are performed in turn, thus, the integration of the characteristics also has to be split into three separate
steps. For this, two things have to be considered. Firstly, when integrating one component of the velocity, we
take into account the shifts of the distribution function that have already been performed. Secondly, we then
have to observe the order of integration, which is reversed with respect to the integration of a particle trajec-
tory. This follows from the fact that, for the Vlasov scheme, the characteristics have to be traced backwards in
time.

For clarity, we will present the back-substation method for forward integration of the characteristics. Later,
we will reverse the order of the substeps for the backward integration needed in the Vlasov scheme. For for-
ward integration, first, the integration in vx is performed, as described in the discussion of Boris� scheme above.
For the integration of the characteristics this means vnþ1

x ¼ vnþ1
x ðvn

x ; v
n
y ; v

n
z Þ. When the integration along the

vy-direction is performed, in the next step, the shift along the vx-direction has already been performed. For
the integration of the characteristics this means that a scheme calculating vnþ1

y ¼ vnþ1
y ðvnþ1

x ; vn
y ; v

n
z Þ is needed.

In the above notation, it is sufficient to reformulate the integration to give vþy ¼ vþy ðvþx ; v�y ; v�z Þ. This can be
achieved using simple algebraic manipulations and eliminating v�x . For the last integration step along the
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vz-direction, one can find in the same manner a scheme giving vþz ¼ vþz ðvþx ; vþy ; v�z Þ. The details of this scheme
are presented in Appendix A. The scheme has also been implemented and it was found to be less diffusive than
the second order time splitting scheme (see Section 6.1). As stated above, the characteristics have to be traced
backwards in time. To this end, we reverse the order of integration, without changing the above formulas; i.e.,
we first shift the distribution function in the vz-direction using vþz ¼ vþz ðvþx ; vþy ; v�z Þ, then in the vy-direction
using vþy ¼ vþy ðvþx ; v�y ; v�z Þ, and finally in the vx-direction using vnþ1

x ¼ vnþ1
x ðvn

x ; v
n
y ; v

n
z Þ.

The splitting of the integration into individual steps introduces another problem, independent of the split-
ting scheme used. The limiters �þi and ��i guarantee only that the distribution function is positive and limited
by f1 from above for incompressible transport equations. The Vlasov equation together with any set of equa-
tions for the electromagnetic fields presents such a system. Due to the separation of the integration along the
different directions in velocity space together with the forces originating from the magnetic field, the single
integration steps are, however, not incompressible. This holds for both the splitting and the back-substitution
scheme. The first direction of integration might compress the distribution function in the vx direction, while
the successive integrations decompress the distribution function in the vy and vz directions. In the end the total
compression will always vanish. The maximum value of the distribution function might however increase
during an intermediate step.

We present two types of calculations. In the first we omit the limiter from above completely, allowing the
distribution function to rise uncontrollably. The limiters �þi and ��i are then given by:
�þi ¼
minð1; 2f i=ðfiþ1 � fiÞÞ if f iþ1 � fi > 0;

1 if f iþ1 � fi < 0;

�
ð46Þ

��i ¼
1 if f i � fi�1 > 0;

minð1; 2f i=ðfi�1 � fiÞÞ if f i � fi�1 < 0.

�
ð47Þ
This means, the maximum principle, that was fulfilled by the original scheme, is now no longer satisfied. In the
second type of simulation we keep the original limiters (32) and (33) but determine f1 to be the global max-
imum of the distribution function after each intermediate integration step for each direction in velocity space.
6. Numerical tests

The third order positive flux conservative method has been extensively tested in one dimension and in the
electrostatic limit [23]. Here, we first want to present results of the integration scheme in three-dimensional
velocity space with a given magnetic field. We compare the results of the two integration schemes and a stan-
dard second order finite difference scheme. The latter is included in the comparison since it has been used for
Vlasov simulations of reconnection by various authors.

In the second part of this section we present results of reconnection simulations. These have been carried
out using both the flux conservative scheme with the back-substitution method and the finite difference
scheme. Results of the two are compared.

6.1. Gyro-motion

To test the quality of the Vlasov integration scheme together with the integration of the characteristics a
simple test system was simulated. In this test only one positively charged species was simulated in a constant
magnetic field B = B0ez, with B0 = 1. The initial distribution function was taken to be a shifted Maxwellian
f ðx; vÞ ¼ exp½�ðv� v0Þ2�; ð48Þ

where v0 = v0ex is a constant velocity in the x-direction. There was no spatial variation, and so a simple gyro-
motion of the thermal peak in velocity space is expected. However, due to numerical errors this peak will
change its shape. These numerical errors only appear in the presence of a magnetic field. In the pure
one-dimensional advection problem only small errors compared with the exact solution are found.

We have simulated the gyro-motion of a thermal peak using the two different integration methods for the
characteristics, different time steps, and varying resolutions of the grid in the velocity dimensions. Additional
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simulations have been carried out using a simple finite difference scheme. The scheme is obtained from Eq (2)
by substituting all partial derivatives by their centred finite difference approximation over one grid cell. A third
order Runge–Kutta method is used for the time step. In Fig. 1, the vx–vy distribution function is shown for the
case of Nv = 30 and Dt = 2pXc/200 using the flux conservative scheme with the back-substitution algorithm
for integration of the characteristics. The z-scaling is arbitrary but identical in the three sub-plots of Fig. 1.
Initially (a), the distribution function is set to the shifted Maxwellian. At t = 2pXc (b), the peak has performed
one full gyration. A slight dissipation can be observed. The dissipation has increased after five gyration periods
t = 10pXc (c). With the above time step, this correspond to a total of 1000 time steps.

The dissipation in phase space can be quantified by taking the second moment of the distribution function
Æ(v � Ævæ)2æ = Æv2æ � Ævæ2 which represents the thermal energy in the system. These have been calculated over a
time of five gyro-periods for different simulation time steps, different grid resolutions of the phase space, and
different time splitting algorithms. In Fig. 2, the thermal energies are shown for both the back-substitution
algorithm (upper panel) and for the time splitting algorithm (lower panel), both taken without limiting the
distribution function from above. For a small time step Dt = 0.01Xc/p, i.e., a time-resolution of 200 time steps
per gyration, calculations using Nv = 10 and Nv = 30 grid points per velocity dimension have been carried out.
In the case of Nv = 10 and using the back-substitution algorithm, the thermal energy rises more than a factor
of 4.5 during the simulated time period. The amount of diffusion can be reduced considerably by increasing the
grid resolution. At Nv = 30, the increase in thermal energy reduces to around 20% over the simulated five
gyro-periods.

For Nv = 10, an increase in the time step by a factor of 10 does not modify the results by a great amount.
The already large diffusion values remain similar although somewhat lower. In contrast, for the Nv = 30 case,
the thermal energy at the end of the simulation is risen only by less than 5% from the starting value, for a time
step of Dt = 0.1Xc/p, i.e., 20 time steps per gyration. This means that an increase in the time steps leads to
better results for the thermal energy. An increase in grid resolution further improves the result and reduces
the error to less than 2%.
Fig. 1. Gyration of a Maxwellian peak using the back-substitution algorithm with Nv = 30 and Dt = 2pXc/200 (a) initially, (b) after one
gyration period and (c) after five gyration periods. The scale on the z-axis is in arbitrary units but identical in the three diagrams.
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Fig. 2. The thermal energy of the distribution function Æv2æ � Ævæ2 during five gyro-periods for different time-steps and different phase space
resolutions. The upper panel shows the curves resulting from the back-substitution algorithm, the lower panel those resulting from the
time splitting algorithm. No limiting from above was applied.
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The results using the time splitting scheme (lower panel of Fig. 2) differ considerably from the previous
results. Again, the thermal energy in the small time step case with Nv = 10 rises strongly. This now gets sub-
stantially less accurate by increasing the time step to 20 steps per gyration. Here, the thermal energy increases
by more than a factor of 12! The best result is achieved by taking a small time step and a grid resolution of
Nv = 30. Instead of a slight increase in thermal energy, a slight decrease can be observed here. Increasing the
time step to 20 steps per gyration degrades the results again. A strong increase in the thermal energy is
observed, which is even worse for higher grid resolutions.

In Fig. 3 the same results are shown again, but this time with the limiting from above switched on. These
results differ only marginally from those obtained without the limiter in place. Note, that the limiter ensuring
positivity of the distribution function is always in place. Summarising, one finds that the back-substitution
method gives superior results over the time-splitting method. Furthermore in terms of thermal energy, the
back-substitution method rewards larger time steps (i.e., less computational time) with higher accuracy.

Instead of looking at the thermal energy, which is related to dissipation in phase space, one can also inves-
tigate the gyro-motion of the Maxwellian peak. From the distribution function the averages Ævxæ and Ævyæ are
taken and plotted against each other through time. In the exact case, this should result in perfectly circular
motion with exactly one turn during a gyration period 2p/Xc. The numerical Vlasov scheme does not, how-
ever, produce exact results and thus one will observe some form of spiral. An example of this spiral is plotted
in Fig. 4.

After some time one can observe errors in both the absolute magnitude of the velocity and in the phase of
the gyro-motion. For the same parameters as above, the magnitude of the velocity after five gyro-periods is
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given in Table 1, for the various schemes and numerical parameters. Table 2 shows the corresponding phase
errors in radians.

The back-substitution shows better results both for the large and the small time steps than the time splitting
method. The best overall result is achieved by the back-substitution method in conjunction with a small time
step and a grid resolution of Nv = 30. Only a marginal phase error can be observed. There is almost no error in
the average velocity. A decrease of the grid resolution results in a positive phase error and a decrease of the
velocity magnitude error. In contrast, an increase of the time step causes a rise in the velocity magnitude
together with an increase of the phase error. Here now, an increase in the grid resolution from 30 to 60
does not improve the results when using a large time step. For a resolution of 10 and a large time step only
the phase error increases. One can note, that in all these cases the phase error is negative. This means that the
simulated gyro-motion always lags behind the physical gyro-motion.

The errors in phase and velocity magnitude are generally larger when using the time splitting method. With
the large time step the magnitude of the velocity goes up by approximately 2–4 times the initial velocity. The
velocity error is lower when using the small time step; however, for the high resolution the error is still 20%.
Only the low resolution, large time step case has a relatively small error in the magnitude. This is accompanied
by a large error in phase. For resolutions 30 and 60, the phase error is better than the one found with the back-
substitution method. The error in the velocity magnitude here is on the other hand, unacceptable. In both
cases one finds that switching on the limiter does not modify any of these results considerably.

Finally, comparing this with the results from the finite difference scheme one finds that the flux conservative
approach is far superior in all cases. Although the finite difference schemes show small amplitude errors, phase
errors are serious. In addition, for the large time steps the finite difference scheme becomes completely unstable
(in agreement with the CFL condition).

6.2. Reconnection

A test of the complete Vlasov–Darwin system has been performed on a magnetic reconnection setup,
including full ion and electron dynamics. As pointed out in the introduction, research on magnetic reconnec-
tion is still one of the most challenging topics in collisionless plasmas. Kinetic simulations using a Vlasov code
have been carried out, for example by Silin and Büchner [18]. Since these simulations were carried out using a
Table 1
Magnitude of the Maxwellian peak after five gyro-periods for different time-steps, different phase space resolutions and different
integration methods

Dt Nv Back-substitution Splitting Finite difference

Limiter No limiter Limiter No limiter Second order Fourth order

p/100 10 0.8892 0.9178 1.0843 1.0496 1.09933 1.04747
p/100 30 0.9981 0.9991 1.2029 1.2021 0.998163 0.999867
p/10 10 1.1100 1.1082 2.1824 2.0992 Unstable Unstable
p/10 30 1.1301 1.1328 2.9553 2.9452 Unstable Unstable
p/10 60 1.1190 1.1209 4.0757 4.0402 Unstable Unstable

The magnitudes are normalised to the initial height of the peak.

Table 2
Phase error of the Maxwellian peak after five gyro-periods for different time-steps, different phase space resolutions and different
integration methods

Dt Nv Back-substitution Splitting Finite difference

Limiter No limiter Limiter No limiter Second order Fourth order

p/100 10 0.04214 0.06544 0.1512 0.1363 2.05693 1.99755
p/100 30 �0.04178 �0.03969 �0.01143 �0.01341 2.07876 2.10456
p/10 10 �0.2500 �0.2349 0.6331 0.6002 Unstable Unstable
p/10 30 �0.08965 �0.09051 0.09543 0.08768 Unstable Unstable
p/10 60 �0.09232 �0.09244 0.05441 0.05011 Unstable Unstable
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finite difference scheme, we will here again present the results of both finite difference and the flux conservative
scheme. We used a simulation box consisting of 50 · 100 grid cells in space with a grid spacing of Dx = 0.1.
The total size of the simulation box is Lx = 10 by Ly = 5. There are 10 · 10 · 10 grid cells in velocity space.
Although the resolution in velocity space is – as shown above – insufficient for the gyro-motion, especially for
the finite difference scheme, this low resolution is chosen for a number of reasons. Firstly, it keeps the com-
putational effort to a reasonable magnitude. Secondly, this corresponds to the phase space resolution chosen
by Wiegelmann and Büchner [19] and thus allows some comparison. Thirdly, we think that the pure gyro-
motion test is a very strict test for the numerical scheme. In the most regions of the reconnection simulation,
the magnetic field is balanced by some electric field or by the density gradient in such a way that the gyro-
motion does not occur the way as presented in the previous section. The mass ratio between electrons and ions
has been chosen to mi/me = 16 and the time step is
Fig. 5.
is the r
Dt ¼ 2:5� 10�3 ¼ 1

25Xce

; ð49Þ
where Xce is the electron Larmor frequency in the unit magnetic field. Simulations with half this time step have
been performed as convergence test (not shown here) but no substantial deviations have been found.

The initial conditions are chosen as two opposite current sheets. Each current layer has the well known
Harris sheet profile [1] together with a small perturbation. The distribution function is given by a shifted
Maxwellian
fi;eðx; yÞ ¼ qðx; yÞ exp
mj

2kT j
ðv2

x þ v2
y þ ðvz � v	0 Þ

2Þ
� �

ð50Þ
with v	0 ¼ 	1. The particle density q(x,y) is given by
qðx; yÞ ¼ 1

coshððy � y	0 Þ=kÞ
1þ e cos

2pðx� x	0 Þ
Lx

� �� �
. ð51Þ
The two Harris sheets, positioned at y+ = Ly/4 and y� = 3Ly/4, carry opposite current, and the perturbations
have a relative shift along the x-axis of p/Lx, given by x+ = 0 and x� = 1/2. The perturbation has a value of
e = 0.05. Periodic boundary conditions are used both in the x and y direction. The X-points will then develop
at X+ = (5,1.25) and X� = (0,3.75).

Fig. 5 shows the temporal evolution of the reconnected flux. The curves are quite similar keeping in mind
that the resolution is marginal. The major difference is the slightly earlier onset of reconnection for the finite
difference runs.

If one wants to compare the schemes, one has to choose the time for the different simulations separately
such that the reconnected flux is the same for all simulations. Therefore, we choose a time at the beginning
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esult of a fourth order finite difference scheme. The dashed-dotted line is the result from the flux conservative scheme.
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of the reconnection phase which corresponds to t = 4.1 for the flux conservative method and to t = 3.1 for the
finite difference schemes.

Fig. 6 shows the perpendicular magnetic field Bz. The upper panel shows the result of the flux conservative
simulation while the mid and lower panel display the results of the finite difference schemes (mid: second order,
lower: fourth order). One can clearly see the quadrupolar structure of the magnetic field component at the
X-point which has been observed in previous simulations of the reconnection process. There is a slight differ-
ence in the distribution of the magnetic field component between the simulations. One significant difference is
the magnitude of Bz. The values are considerably larger in the second order finite difference scheme than in the
flux conservative scheme and fourth order finite difference scheme.
Fig. 6. The out of plane magnetic field component Bz in the simulation box at t = 4.1 using the back-substitution method (upper panel)
and at t = 3.1 using the finite difference scheme in second order (middle panel) and fourth order (lower panel).



Fig. 7. The magnitude of the Hall term |(j · B)z| in the simulation box at t = 4.1 using the back-substitution method (upper panel) and at
t = 3.1 using the finite difference scheme in second order (middle panel) and fourth order (lower panel).
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In Fig. 7, the magnitude of the z-component of the Hall-term |(j · B)z| is shown for the different schemes.
This quantity can be taken as a measure for the importance of the Hall term when comparing to MHD mod-
els. All simulations show qualitatively a similar behaviour. From the results of the flux conservative simulation
one can see that the z-component of the Hall term is largest outside of the X-points.

7. Conclusions

A five-dimensional Vlasov code using the Darwin approximation of Maxwell�s equations has been pre-
sented. While in the past a lot of development has gone into developing numerical schemes for one-dimen-
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sional electrostatic Vlasov codes, there is a growing need for kinetic codes that include the effects of the mag-
netic field. This is needed for both the simulation of astrophysical as well as laboratory plasmas. For a large
number of problems the electromagnetic vacuum modes contained in the full set of Maxwell equations is not
of major importance for the physical processes. These, however, pose severe restrictions on the simulation
parameters, due to the CFL criterion. The Darwin approximation resolves this problem by eliminating the
vacuum modes without reverting to the electrostatic limit. In contrast to other approximations of Maxwell�s
equations, the Darwin approximation can be shown to consistently emerge from an expansion of the full equa-
tions in orders of v2

0=c2. The Darwin approximation has been used extensively in particle in cell simulations but
has not found it�s way into Vlasov codes until now. Within the framework of the Darwin approximation the
purely electromagnetic modes are cancelled, but the modes that rely on the plasma reaction to the magnetic
field are retained, such as the magnetosonic or Alfvén modes.

For the integration of the Vlasov equation in time a recently developed flux conservative scheme [23] has
been used. The scheme, which was originally proposed for a one-dimensional electrostatic system had, to be
generalised for the higher dimensional phase space required for the Vlasov–Darwin system. The generalisation
of the one-dimensional system is ambiguous and two different schemes have been compared: the straightfor-
ward time splitting scheme [28] using a generalised time splitting iteration was shown to suffer from substantial
inaccuracies; the back-substitution scheme, proposed in this work, gives far better results not only in terms of
an accurate reproduction of the gyro-motion but also concerning the controllability of the errors. Results were
also compared to finite difference simulations which were shown to be greatly inaccurate in comparison to the
flux conservative scheme.

Finally, a simulation of magnetic reconnection has been performed to test the full Vlasov–Darwin system.
For comparison, the same system has also been simulated using the finite difference scheme. The finite differ-
ence scheme has been chosen as a reference scheme since this is the most common approach for simulation
magnetic reconnection using a Vlasov code. Substantial improvements were achieved using the code presented
here. The results especially of derived quantities, did not suffer from numerical fine scale distortions. It was
shown that the results of the scheme presented here can be treated as much more reliable that those of a finite
difference scheme.

The code presented here may be used for the investigation of magnetic reconnection processes and for the
simulation of nonrelativistic collisionless shocks. The main advantages, as compared to PIC simulations, is the
absence of numerical noise and the access to the full distribution function, especially the high energy tails. In
PIC simulations these high energy tails generally suffer from bad statistics. For this reason, it might be of inter-
est to use Vlasov codes to simulate particle acceleration.

One should note however that, because of the large computational time, the applicability of Vlasov codes at
this time stays restricted to two-dimensional models. Again, in comparison to PIC codes, Vlasov codes are
slower by a factor of a hundred. Despite this comparatively large numerical effort, Vlasov simulations are still
valuable since they complement other simulation techniques.
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Appendix A. Back-substitution method for integration of characteristics

Here, we present the formulae for the integration of the characteristics in the velocity space using the back-
substitution method. The three integrations in vx-, vy- and vz-direction are carried out individually. The under-
lying equations have been presented in Section 5 but are in an implicit form for our purpose. Here we want to
give explicit formulae for the three steps:
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vnþ1
x ¼ vnþ1

x ðvn
x ; v

n
y ; v

n
z Þ; ðA:1Þ

vnþ1
y ¼ vnþ1

y ðvnþ1
x ; vn

y ; v
n
z Þ; ðA:2Þ

vnþ1
z ¼ vnþ1

z ðvnþ1
x ; vnþ1

y ; vn
z Þ. ðA:3Þ
Since the bijections between vn and v� on one hand and vn + 1 and v+ on the other hand are trivial (see Eqs. (39)
and (40)) it is sufficient to formulate the three steps:
vþx ¼ vþx ðv�x ; v�y ; v�z Þ; ðA:4Þ
vþy ¼ vþy ðvþx ; v�y ; v�z Þ; ðA:5Þ
vþz ¼ vþz ðvþx ; vþy ; v�z Þ. ðA:6Þ
By virtue of Eqs. (44) and the x-component of (45), vx is already given in the above form. The integration in vx

is identical to the integration used in the time splitting algorithm.
In the second integration step vþy has to be determined from ðvþx ; v�y ; v�z Þ. The y-component of Eq. (45) gives

vþy ¼ vþy ðv�x ; v�y ; v�z Þ. However, the x-component of that equation can now be solved for v�x to give
v�x ¼ v�x ðvþx ; v�y ; v�z Þ ¼
1

Ax
ðvþx � v�y ðsz þ sytxÞ � v�z ðsy � sztxÞÞ ðA:7Þ
with
Ax ¼ 1� syty � sztz. ðA:8Þ

With this we get
vþy ðvþx ; v�y ; v�z Þ ¼ vþy ðv�x ðvþx ; v�y ; v�z Þ; v�y ; v�z Þ. ðA:9Þ
In the same manner the z-component of Eq. (45) gives vþz ¼ vþz ðv�x ; v�y ; v�z Þ. Then the x and y-components of
that equation are used to solve for v�x and v�y :
v�x ¼
ð1� sxtx � sztzÞðvþx þ ðsy � sztxÞv�z Þ � ðsz þ sytxÞðvþy � ðsx þ sztyÞv�z Þ

ð1� syty � sztzÞð1� sxtx � sztzÞ þ ðsz þ sytxÞðsz � sxtyÞ
; ðA:10Þ

v�y ¼
ðsz � sxtyÞðvþx þ ðsy � sztxÞv�z Þ þ ð1� syty � sztzÞðvþy � ðsx þ sztyÞv�z Þ

ð1� syty � sztzÞð1� sxtx � sztzÞ þ ðsz þ sytxÞðsz � sxtyÞ
. ðA:11Þ
Inserting this into vþz ðv�x ; v�y ; v�z Þ then provides the expression for vþz ¼ vþz ðvþx ; vþy ; v�z Þ.
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[19] T. Wiegelmann, J. Büchner, Evolution of magnetic helicity in the course of kinetic magnetic reconnection, Nonlinear Process.

Geophys. 8 (2001) 127.
[20] J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L.

Pritchett, Geospace Environmental Modeling (GEM) magnetic reconnection challenge, J. Geophys. Res. 106 (2001) 3715.
[21] T.P. Armstrong, R. Harding, G. Knorr, D. Montgomery, Solution of Vlasov�s equation by transform methods, Adv. Comput. Phys. 9

(1976) 29.
[22] T. Arber, R.G.L. Vann, A critical comparison of Eulerian grid based Vlasov solvers, J. Comput. Phys. 180 (2002) 339.
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